Versatile Photocatalytic Systems for H2 Generation in Water Based on an Efficient DuBois-Type Nickel Catalyst
نویسندگان
چکیده
The generation of renewable H2 through an efficient photochemical route requires photoinduced electron transfer (ET) from a light harvester to an efficient electrocatalyst in water. Here, we report on a molecular H2 evolution catalyst (NiP) with a DuBois-type [Ni(P2(R')N2(R"))2](2+) core (P2(R')N2(R") = bis(1,5-R'-diphospha-3,7-R"-diazacyclooctane), which contains an outer coordination sphere with phosphonic acid groups. The latter functionality allows for good solubility in water and immobilization on metal oxide semiconductors. Electrochemical studies confirm that NiP is a highly active electrocatalyst in aqueous electrolyte solution (overpotential of approximately 200 mV at pH 4.5 with a Faradaic yield of 85 ± 4%). Photocatalytic experiments and investigations on the ET kinetics were carried out in combination with a phosphonated Ru(II) tris(bipyridine) dye (RuP) in homogeneous and heterogeneous environments. Time-resolved luminescence and transient absorption spectroscopy studies confirmed that directed ET from RuP to NiP occurs efficiently in all systems on the nano- to microsecond time scale, through three distinct routes: reductive quenching of RuP in solution or on the surface of ZrO2 ("on particle" system) or oxidative quenching of RuP when the compounds were immobilized on TiO2 ("through particle" system). Our studies show that NiP can be used in a purely aqueous solution and on a semiconductor surface with a high degree of versatility. A high TOF of 460 ± 60 h(-1) with a TON of 723 ± 171 for photocatalytic H2 generation with a molecular Ni catalyst in water and a photon-to-H2 quantum yield of approximately 10% were achieved for the homogeneous system.
منابع مشابه
Light-driven hydrogen production from aqueous solutions based on a new Dubois-type nickel catalyst.
In this work, we report a new photocatalytic system that links multifunctional semiconductor nanocrystals with emerging water-soluble molecular catalysts made of earth-abundant elements for H2 generation [Ni(P2RN2R')2(BF4)2]4-, R = Ph, R' = [PhSO3]- (NiS). This noble metal free hybrid exhibits remarkable catalytic activity with a turnover number of 511 for H2 production and a photon-to-H2 conve...
متن کاملNickel as a co-catalyst for photocatalytic hydrogen evolution on graphitic-carbon nitride (sg-CN): what is the nature of the active species?
The nature of a nickel-based co-catalyst deposited on a sol-gel prepared porous graphitic-carbon nitride (sg-CN), for photocatalytic H2 production from water, has been investigated. The formation of the active catalytic species, charge separation and recombination of the photogenerated electrons and holes during photochemical H2 evolution has been determined for the first time using in situ EPR...
متن کاملHigh efficient degradation of Cefixime using UV/TiO2 photocatalytic process: A comparison between photocatalytic and photolytic
Introduction: The existence of pharmaceuticals in aquatic ecosystem, their persistence and possible effects on living organisms and inefficient systems in removal of these compounds from water and wastewater are a growing concern. In this research, the UV/TiO2 photocatalytic degradation of Cefixime was investigated so as to identify if this method was efficient for removal of Cefixime or not. ...
متن کاملNovel-structured electrospun TiO2/CuO composite nanofibers for high efficient photocatalytic cogeneration of clean water and energy from dye wastewater.
It is still a challenge to photocatalytically cogenerate clean water and energy from dye wastewater owing to the relatively low photocatalytic efficiency of photocatalysts. In this study, novel-structured TiO2/CuO composite nanofibers were successfully fabricated via facile electrospinning. For the first time, the TiO2/CuO composite nanofibers demonstrated multifunctional ability for concurrent...
متن کاملUnravelling the pH-dependence of a molecular photocatalytic system for hydrogen production† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc01349f Click here for additional data file.
Photocatalytic systems for the reduction of aqueous protons are strongly pH-dependent, but the origin of this dependency is still not fully understood. We have studied the effect of different degrees of acidity on the electron transfer dynamics and catalysis taking place in a homogeneous photocatalytic system composed of a phosphonated ruthenium tris(bipyridine) dye (RuP) and a nickel bis(dipho...
متن کامل